batch_norm (name, inputs, is_training=tf.constant(False), activation=None, scale=True, *args, **kwargs)
|
|
conv2d (name, inputs, filters, kernel_size, strides=1, padding=’SAME’, activation=tf.nn.relu, is_debug=False, *args, **kwargs)
|
|
fully_connected (name, inputs, filters, is_debug=False, activation=tf.nn.relu, *args, **kwargs)
|
|
max_pooling2d (name, inputs, pool_size, strides=1, padding=’SAME’, is_debug=False, *args, **kwargs)
|
|
max_pool_with_argmax (name, inputs, pool_size, strides=1, padding=’SAME’, is_debug=False, *args, **kwargs)
|
|
average_pooling2d (name, inputs, pool_size, strides=1, padding=’SAME’, is_debug=False, *args, **kwargs)
|
|