:mod:`blueoil.networks.object_detection.yolo_v2_quantize` ========================================================= .. py:module:: blueoil.networks.object_detection.yolo_v2_quantize Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: blueoil.networks.object_detection.yolo_v2_quantize.YoloV2Quantize .. py:class:: YoloV2Quantize(quantize_first_convolution=True, quantize_last_convolution=True, activation_quantizer=None, activation_quantizer_kwargs={}, weight_quantizer=None, weight_quantizer_kwargs={}, *args, **kwargs) Bases: :class:`blueoil.networks.object_detection.yolo_v2.YoloV2` Quantize YOLOv2 Network. It is based on original YOLO v2. .. method:: _quantized_variable_getter(weight_quantization, quantize_first_convolution, quantize_last_convolution, getter, name, *args, **kwargs) :staticmethod: Get the quantized variables. Use if to choose or skip the target should be quantized. :param getter: Default from tensorflow. :param name: Default from tensorflow. :param weight_quantization: Callable object which quantize variable. :param args: Args. :param kwargs: Kwargs. .. method:: base(self, images, is_training) Base network. Returns: Output. output shape depends on parameter. When `data_format` is `NHWC` shape is [ batch_size, num_cell[0], num_cell[1], (num_classes + 5(x, y ,w, h, confidence)) * boxes_per_cell(length of anchors), ] When `data_format` is `NCHW` shape is [ batch_size, (num_classes + 5(x, y ,w, h, confidence)) * boxes_per_cell(length of anchors), num_cell[0], num_cell[1], ]