:mod:`blueoil.networks.classification.quantize_example` ======================================================= .. py:module:: blueoil.networks.classification.quantize_example Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: blueoil.networks.classification.quantize_example.SampleNetwork blueoil.networks.classification.quantize_example.SampleNetworkQuantize .. py:class:: SampleNetwork(*args, **kwargs) Bases: :class:`blueoil.networks.classification.base.Base` Sample network with simple layer. .. method:: base(self, images, is_training) Base function contains inference. :param images: Input images. :param is_training: A flag for if is training. :returns: Inference result. :rtype: tf.Tensor .. py:class:: SampleNetworkQuantize(quantize_first_convolution=True, quantize_last_convolution=True, activation_quantizer=None, activation_quantizer_kwargs={}, weight_quantizer=None, weight_quantizer_kwargs={}, *args, **kwargs) Bases: :class:`blueoil.networks.classification.quantize_example.SampleNetwork` Quantize Sample Network. .. method:: _quantized_variable_getter(weight_quantization, quantize_first_convolution, quantize_last_convolution, getter, name, *args, **kwargs) :staticmethod: Get the quantized variables. Use if to choose or skip the target should be quantized. :param weight_quantization: Callable object which quantize variable. :param quantize_first_convolution: Use quantization in first conv. :type quantize_first_convolution: bool :param quantize_last_convolution: Use quantization in last conv. :type quantize_last_convolution: bool :param getter: Default from tensorflow. :param name: Default from tensorflow. :param args: Args. :param kwargs: Kwargs. .. method:: base(self, images, is_training) Base function contains inference. :param images: Input images. :param is_training: A flag for if is training. :returns: Inference result. :rtype: tf.Tensor